@ Measuring Performance on the GPU

= Advice: experiment with a few different block layouts, e.g.,
dim3 threads (16,16) and dim3 threads (128,2) ;
then compare performance

= CUDA API for timing: create events

// create two "event" structures

cudaEvent t start, stop;

cudaEventCreate (&start); cudaEventCreate (&stop) ;
// insert the start event in the queue
cudaEventRecord( start, 0 );

now do something on the GPU, e.g., launch kernel

cudaEventRecord( stop, 0 ); // put stop into queue
cudaEventSynchronize( stop ); // wait for 'stop' to finish
float elapsedTime; // print elapsed time

cudaEventElapsedTime ( &elapsedTime, start, stop );
printf ("Time to exec kernel = %f ms\n", elapsedTime ) ;
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W On CPU/GPU Synchronization

= All kernel launches are asynchronous:
= Control returns to CPU immediately
= Kernel starts executing once all previous CUDA calls have completed

= You can even launch another kernel without waiting for the first to finish

- They will still be executed one after another
= Memcopies are synchronous:
= Control returns to CPU once the copy is complete

= Copy starts once all previous CUDA calls have completed
" cudaDeviceSynchronize():

= Blocks until all previous CUDA calls are complete
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cuda- kernel a kernel x cuda-
Memcpy <<<gl,b1>> <<<g2,b2>> Memcpy

= Advantage of asynchronous CUDA calls:
= CPU can work on other stuff while GPU is working on number crunching

= Ability to overlap memcopies and kernel execution (we don't use this
special feature in this course)
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W  Why Bother with Blocks?

= The concept of blocks seems unnecessary:

= |t adds a level of complexity
= The CUDA compiler could have done the partitioning of a range of
threads into a grid of blocks for us
= What do we gain?
= Unlike parallel blocks, threads within a block have mechanisms to
communicate & synchronize very quickly
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W Computing the Dot Product ‘g

= Next goal: compute

N
d=xy= in)/i
i=0

= We know how to do (x;y;) on the GPU,
but how do we do the summation?

for large vectors

= Naive (pseudo-parallel) algorithm:
= Compute vector z with z; = x;y; in parallel
= Transfer vector z back to CPU, and do summation sequentially

= Another (somewhat) naive solution:

= Compute vector z in parallel

= Do summation of all z; in thread O
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U Cooperating Threads / Shared Memory g,

= Shared Memory:

= A block of threads can have some amount of shared memory

= All threads within a block have the same "view" of this

- Just like with global memory

BUT, access to shared memory is much faster!

- Kind of a user-managed cache

Not visible/accessible to other blocks

Every block has their own copy

- So allocate only enough for one block

Declared with qualifier __shared

Threads Threads Threads

Shared Memory Shared Memory Shared Memory
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W Overview of the Efficient Dot Product .

A[O] | A[1] | A[2] | A[3] | A[4] | ... [AIn+O]|A[n+1]|A[n+2]|A[n+3]|A[n+4]| ... | A[N-1]
I N N | Global
B[0] | B[1] | B[2] | B[3] | B[4] memory
... |B[n+0]|B[n+1] | B[n+2] | B[n+3] | B[n+4]| ... B[N-1]
o] ey cizr eyl car | ... Tcrop el crzn | ezl cra1 ] ... | anr
memory

\ v J \ v J \ J

N 7

P[O] | P[1] | P[2] | P[3]| ... ... | P[N/512] } memory
Host
P[O] | P[1]1 | P[2] | P[3]1| ... |P[n]| ... | P[N/512] } memory

e Tl
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Terminology

= The term "reduction" always means that the output
stream/vector of a kernel is smaller than the input

[ J

\ J

= Examples:
= Dot product; takes 2 vectors, outputs 1 scalar = summation reduction

= Min/max of the elements of a vector = min/max reduction

[ ) &=
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Efficiently Computing the Summation Reduction

= A (common) massively-parallel programming pattern:

clo]| C[1] C[2] C[N/2-11 | C[N/2] | C[N/2+1]1| C[N/2+2] C[N-1]
S E———
° G"‘e G 1. iteration
clo]| [ C[2] CIN/2-11| C[N/2] | C[N/2+1]| C[N/2+2] C[N-1]
clo] | c[1] C[2] ... | cIN/2-11 | CIN/2] | C[N/2+1]| C[N/2+2] C[N-1]
C[0] C[1] C[2] ... | CIN/2-11| C[N/2] | C[N/2+1] | C[N/2+2] C[N-1]
é/ log,(N)-th iteration
cfo]| C C[2] CIN/2-11| C[N/2] | C[N/2+1]| C[N/2+2] C[N-1]
G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA

9



&
The complete kernel for the dot product ’
__global
void dotprod( float *a, float *b, float *p, int N ) This code
__shared  float cache[blockDim.x]; contains a bug|

int tid = threadIdx.x + blockIdx.x * blockDim.x;

if ( tid < N )
cache[threadIdx.x] = a[tid] * b[tid];

// Here, for easy reduction,
// blockDim.x must be a power of 2!

And that bug
is probably
int stride = blockDim.x/2; hard to find!
while ( stride !'= 0 ) {
if ( threadIdx.x < stride )
cache[threadIdx.x] += cache[threadldx.x + stride];

stride /= 2;
}

// last thread copies partial sum to global memory
if ( threadIdx.x == 0 )
p[blockIdx.x] = cache[0];
}
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The complete kernel for the dot product

__global
void dotprod( float *a, float *b, float *p, int N ) {

}

__shared  float cache[blockDim.x];
int tid = threadlIdx.x + blockIdx.x * blockDim.x;

if ( tid < N )
cache[threadIdx.x] = a[tid] * b[tid];

// Here, for easy reduction,
// blockDim.x must be a power of 2!
syncthreads () ;
int stride = blockDim.x/2;
while ( stride !'= 0 ) {
if ( threadIdx.x < stride )
cache[threadIdx.x] += cache[threadldx.x + stride];
__syncthreads() ;
stride /= 2;

}

// last thread copies partial sum to global memory
if ( threadIdx.x == 0 )
p[blockIdx.x] = cache[0];

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA
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W New Concept: Barrier Synchronization

£

[,

= The command implements what is called a barrier synchronization
(or just "barrier"):
All threads wait at this point in the execution of their program,
until all other threads have arrived at this same point

Thread 0 __syncthreads ()
Thread 1 __syncthreads ()

Thread 2 __syncthreads ()

Thread 3
Thread 4

__syncthreads ()

__syncthreads ()

= Warning: threads are only synchronized within a block!
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Y The Complete Dot Product Program ""-s&%

// allocate host & device arrays h a, d a, etc.
// h c, d p = arrays holding partial sums

dotprod<<< nBlocks, nThreadsPerBlock >>>( d a, d b, d p, N );
transfer d p -> h p
float prod = 0.0;

for ( int i = 0; i < nBlocks, i ++ )
prod += h p[i];
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Y How to Compute the Dot-Product Completely on the GPU B

= You might want to compute the dot-product complete on the GPU
= Because you need the result on the GPU anyway
" |dea for achieving barrier right before 2" reduction:

1. Compute partial sums with one kernel
2. With another kernel, compute final sum of partial sums

= Gives us automatically a sync/barrier between first/second kernel

Block O Block 1 Block 2

{ I | R

\ T AN J y J
\ - Kernel 1 (partial sums) /
\ Kernel 2 (final sums) /

v
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U A Caveat About Barrier Synchronization

<n
=0

= You might consider "optimizing" the kernel like so:

__global .
void dotprod( float *a, float *b, float *c, int N This code
{ contains a bug!

// just like before

// incorrectly optimized reduction

__syncthreads() ;

int stride = blockDim.x/2; Hrnakesyour

while ( stride '= 0 ) { CHnJhang."!
if ( threadIdx.x < stride )

{
cache[threadIdx.x] += cache[threadIdx.x + stride];

__syncthreads() ;

}
stride /= 2;

}

// rest as before

= |dea: only wait for threads that were actually writing to memory ...

= Bug: the barrier will never be fulfilled!
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mEm e,
A



eeeeee

New Concepts & Terminology

= A race condition occurs when overall program behavior depends
upon relative timing of two (or more) event sequences

= Frequent case: two processes (threads) read-modify-write the

JOIAeYog 109110
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Y

Race Conditions

= Race conditions come in three different kinds of hazards:

<n

= Read-after-write hazard (RAW): true data dependency, most common type

= Write-after-read hazard (WAR): anti-dependency (basically the same as RAW)

= Write-after-write hazard (WAW): output dependency
= Consider this (somewhat contrived) example:
= Given input vector x, compute output vector
y = (X0*X1, X0*X1, X2¥X3, X2¥X3, X4¥X5, X4*X5, ... )
= Approach: two threads, one for odd/even numbered elements

kernel ( const float * x, float * y, int N ) {
__shared  cache[2];
for ( int i = 0; 1 < N/2; i ++ ) {
cache[threadIlIdx.x] = x[ 2*i + threadldx.x];
y[2*1i + threadIdx.x] = cache[0] * cachel[l];

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA
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= Execution in a warp, i.e., in lockstep:

Thread O Thread 1
cache[0] = x[0]; cache[l] = x[1];
y[0] = cache[0] * cache[l]; y[1] = cache[0] * cache[l];
cache[0] = x[2]; cache[l] = x[3];
y[2] = cache[0] * cache[l]; y[3] = cache[0] * cache[l];
cache[0] = x[4]; cache[l] = x[5];
y[4] = cache[0] * cache[l]; y[5] = cache[0] * cache[l];

= Everything is fine

= |n the following, we consider execution in different warps / SMs

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA
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Thread O Thread 1

cache[0] = x[0]; (Qead—after—write hazard! ]
y[0] = cache[0] * cache[l];
cache[l] = x[1];

y[1] = cache[0] * cache[l];

cache[0] = x[2];

y[2] = cache[0] * cache[l];
(_§\§*cache[1] = x[3];

y[3] = cache[0] * cache[l];

cache[0] = x[4];
y[4] = cache[0] * cache[l];
cache[l] = x[5];
y[5] = cache[0] * cache[l];
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= Remedy:

kernel ( const float * x,

{

__shared  cache[2];

float * y,

for ( int i = 0; i < N/2; i ++ )

{
cache[threadIdx.x]

__syncthreads() ;

int N )

= x[ 2*i + threadIdx.x];

y[2*i + threadIdx.x] = cache[0] * cache[l];

G. Zachmann Massively Parallel Algorithms SS

May 2014
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Thread O Thread 1

cache[0] = x[0];
cache[l] = x[1];
- syncthreads ()

Y[01]1 TOTaCheEZ} : cache[1]; L Write-after-read hazard!
cacne = X ’
——;TIT§;*cache[0] * cache[l];

cache[l] = x[3];

- syncthreads ()

y[2] = cache[0] * cache[l];
cache[0] = x[4] ;«

*——;TET\E*cache[O] * cache[l];

cache[l] = x[5];

- syncthreads ()
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= Final remedy:

kernel( const float * x, float * y, int N )

{
__shared  cache[2];
for ( int i = 0; 1 < N/2; i ++ )
{
cache[threadldx.x] = x[ 2*i + threadIdx.x];
__syncthreads() ;
y[2*i + threadIdx.x] = cache[0] * cache[l];
__syncthreads() ;
}
}

= Note: you'd never design the algorithm this way!
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Y Digression: Race Conditions are an Entrance Door for Hackers

= Race conditions occur in all environments and programming
languages (that provide some kind of parallelism)

= CVE-2009-2863:

= Race condition in the Firewall Authentication Proxy feature in Cisco 10S
12.0 through 12.4 allows remote attackers to bypass authentication, or
bypass the consent web page, via a crafted request.

= CVE-2013-1279:

= Race condition in the kernel in Microsoft [...] Windows Server 2008 SP2,
R2, and R2 SP1, Windows 7 Gold and SP1, Windows 8, Windows Server
2012, and Windows RT allows local users to gain privileges via a crafted
application that leverages incorrect handling of objects in memory, aka
"Kernel Race Condition Vulnerability".

= Many more: search for "race condition" on http://cvedetails.com/

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA
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Application of Dot Product: Document Similarity

= Task: compute "similarity" of documents (think Google)
= One of the fundamental tasks in information retrieval (IR)

= Example: search engine / database of scientific papers needs to
suggest similar papers for a given one

= Assumption: all documents are over a given, fixed vocabulary V
consisting of N words (e.g., all English words)

= Consequence: set of words, V, occurring in the docs is known & fixed

= Assumption: don't consider word order — bag of words model

= Consequence: "John is quicker than Mary" = "Mary is quicker than John"

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA
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= Representation of a document D:

= For each word weV: determine f(w) = frequency of word win D

WORSER 2 0

= Exam p|et Anthony &  Julius The Hamlet Othello Macbeth
Cleopatra Caesar  Tempest

ANTHONY 157 73 0 0 0 1

BRUTUS 4 157 0 2 0 0

CAESAR 232 227 0 2 1 0

CALPURNIA 0 10 0 0 0 0

CLEOPATRA 57 0 0 0 0 0

MERCY 2 0 3 8 5 8

1 1 1 5

= Fix a word orderin V= (vq, v, v3, ..., vy ) (in principle, any order will do)

= Represent D as a vector in RN

D= (f(w), f(va), f(vs), ..., F(va))

= Note: our vector space is HUGE (N ~ 100,000 - 10,000,000)

= For each word w, there is one axis in our vector space!

G. Zachmann Massively Parallel Algorithms SS May 2014 Fundamental Algos & Introduction to CUDA
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= Define similarity s between documents oo
D41 and D; as 11 V(D)

Dy - D,
s(Dy, Dy) = = cos(Dy, D
(P B2) = 5oy = Cos(Pr P2)

= This similarity measure is called "vector space model"

= One of the most frequently used similarity measures in IR

= Note: our definition is a slightly simplified version of the commonly
used one (we omitted the tf-idf weighting)
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" Why not the Euclidean distance |D; — Ds|| ?

= Otherwise: documents D, and D concatenated to itself would be very
dissimilar!

POOR d»: Rich poor gap grows
14 di: Ranks of starving poets swell

g: [rich poor]

d: Record baseball salaries in 2010
1= RICH

= Why do we need the normalization by WM?

= Same reason ...
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Parallel Reduction Revisited

= Why didn't we do the reduction this way?

10 | 1 8 [ -1 0| -2 3 5 |1-2 (-3

> Q7 9 & & &

o e g,/ é/ &

TIDs

TIDs <

§
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= The kernel for this algorithm: Problem:

highly
divergent
warps are

very inefficient

// do reduction in shared mem
__syncthreads() ;
for ( int 1 = 1; i1 < blockDi

{
if ( threadIdx.x % (2*i) == 0 )
cache[threadIdx.x] += cache[threadIdx.x + 1i];
__syncthreads() ;
}

= Further problem: memory access is not contiguous ®

= The GPU likes contiguous memory access [
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Y A Real Optimization for Reduction

= Reduction usually does not do a lot of computations
= Called low arithmetic intensity (more on that later)

= Try to maximize bandwidth by reducing the instruction overhead
= Here: try to get rid of any instruction that is not load/store/arithmetic
= |.e., get rid of address arithmetic and loop instructions

= Observation:
= As reduction proceeds, # active threads decreases
= When stride <= 32, only one warp of threads is left

= Remember: instructions within warp are SIMD (lock-stepped)

= Consequence:

= No __syncthreads() necessary

= No if (threadIdx.x < stride) necessary, because of lock-stepped
threads within the warp (i.e., 1 £ doesn't save work anyway)
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= Optimization: unroll last 6 iterations (=log(32))

int stride = blockDim.x/2;
while ( stride > 32 ) {
if ( threadlIdx.x < stride )
cache[threadlIdx.x] += cache[threadIdx.x + stride];
__syncthreads() ;
stride /= 2;

if ( threadIdx.x < 32 )

sdata[tid] += sdata[tid + 32];
sdata[tid] += sdata[tid + 16];
sdata[tid] += sdata[tid + 8];
sdata[tid] += sdata[tid + 4];
sdata[tid] += sdata[tid + 2];
sdata[tid] += sdata[tid + 1];

}
= Note: This saves useless work in all warps, not just the last one

= Gives almost factor 2 speedup over previous version!
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= Partition your domain such that each subset fits into shared memory;
handle each data subset with one thread block
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= Load the subset from global memory to shared memory; exploit
memory-level parallelism by loading one piece per thread; don't forget
to synchronize all threads before continuing!
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= Perform the computation on the subset in shared memory
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= Copy the result from shared memory back to global memory
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